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 ABSTRACT 

This paper studies a single unit cold standby repairable system consisting of two 
identical components with one repairman. It is assumed that  the  successive operating 
times of each component form a decreasing arithmetico - geometric process while the 
consecutive repair times form an increasing arithmetico- geometric process and each 
component after repair is not ‘as good as new’. Under these assumptions, by using 
arithmetico-geometric process, a repair replacement policy N is studied based on the 
number of failures of the component 1. An explicit expression for the long –run 
average cost per unit time is derived and corresponding optimal replacement policy 
N*is determined such that the long –run average cost per unit time is minimized. 
Finally, numerical results are provided to highlight the theoretical results. 

Key Words: Renewal process, Arithmetico-Geometric process, Geometric process, 
Repair replacement policy, Renewal cycle, Renewal   reward theorem, Convolution 

1. INTRODUCTION 

 In the fields of maintenance problems 
many replacement models were 
developed based on the assumption that 
the system after repair is ‘as good as 
new’. This model is referred as perfect 
repair model. Barlow and Hunter 
introduced [2] a minimal repair model in 
which a minimal repair does not change 
the age of the system.  Thereafter an 
imperfect repair model was developed by 
Barlow and Proschan [1] under which a 
repair with probability p as perfect repair 
and with probability 1-p as minimal 
repair. Many others worked in this 
direction and developed corresponding 
optimal replacement polices e.g. Black et 
al [3], Park [13], Kijima [12] etc. 

   In general, for a deteriorating 
system, it is reasonable to assume that 
the successive working times are 

stochastically decreasing while the 
consecutive repair times after failures are 
stochastically increasing, due to the 
ageing and accumulated wearing many 
systems. Thus a monotone process model 
should be a natural model for a 
deteriorating system. Ultimately, such 
systems can’t work any longer. Neither 
can it be repaired any more. 

 To model such simple repairable 
deteriorating system Lam [6, 7] first 
introduced a geometric process repair 
model under the assumptions that the 
system after repair is not ‘as good as new’ 
and the successive working times {X

n
, 

n=1, 2,….} of a system form a decreasing 
geometric process while the consecutive 
repair times {Y

n
, n=1, 2,….} form a 

increasing geometric process. Under 
these assumptions, he considered two 
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kinds of replacement polices -one based 
on the working age T of the system and 
other based on the number of failures N 
of the system. An explicit expression is 
derived for the long-run- average cost per 
unit time and also determined 
corresponding optimal replacement policy 
N* such that the long-run-expected 
average cost per unit time is minimized.  

 In order to enhance the reliability 
and availability of the repairable system 
Zhang [23] considered optimal 
replacement model for a deteriorating 
production system with the preventive 
maintenance .He presented an optimal 
replacement policy T and N with 
preventive maintenance to generalize 
Lam’s work [6]. 

 Later Zhang [21] developed a 
bivariate replacement policy (T, N) to 
generalize Lam’s work. He considered a 
bivariate replacement policy (T, N) under 
which the system is replaced when the 
working age of the system reaches T and 
the number of failures of the system 
reaches N, which ever occurs first. He 
derived an explicit expression for the 
long-run average cost per unit time and 
corresponding optimal replacement policy 

(T*, N * ) was determined analytically or 
numerically. Other replacement policies 
under geometric process repair model 
were reported by Zhang [24-27], Leung 
[5], Zhang at all [25], Stadje and 
Zuckerman [17, 18], Stanley [16], Lam [8-
10], Lam at al [11], Wang and Zhang [19, 
20] Lam and Zhang [9]. 

 All the research works discussed 
above are related to one component 
repairable system. However on practical 
application, the standby techniques are 
usually used for improving the reliability 
or raising the availability of the system. 

Thus Zhang [22] applied the geometric 
process repair model to a two-identical 
component cold standby repairable 
system with one repairman. It is assumed 
that the system after repair is not ‘as 
good as new’ and the successive working 
times form a decreasing geometric 
process while the consecutive repair 
times form an increasing geometric 
process. Under these assumptions he 
studied a replacement policy N and 
corresponding optimal replacement policy 
N * is determined such that the long-run-
average cost per unit time is minimum. 

                     The purpose of this paper is 
to apply arithmetico-geometric process 
model for a single unit cold standby 
system with one repairman to generalize 
Zhang’s work [22]. An arithmetico- 
geometric process approach is considered 
to be more relevant, realistic and direct 
to the modeling of the deteriorating 
system of maintenance problems that are 
encountered in most situations other 
than perfect or minimal repair models.  

                            In most of the practical 
problems, the data of successive inter 
event times usually exhibit a trend. They 
may be modeled using a non – 
homogeneous Poisson process (NHPP) in 
which the failure rate at time t is a 
function of‘t’. The NHPP is a popular 
approach to model data having trend. A 
minimal repair model can be provide at 
least good first order model for 
deteriorating system where repair time is 
assumed negligible and NHPP in which 
the rate of occurrence of time is 
monotone. Based on this understanding 
and AGP (Arithmetico- geometric 
process) approach here is more relevant, 
realistic and direct to model of the 
maintenance problems of deteriorating 
system. Therefore for a deteriorating 
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system, it is assumed that the successive 
operating times of each component form 
a decreasing arithmetico- geometric 
process while the consecutive repair 
times form an increasing arithmetico- 
geometric process and each component 
after repair is not ‘as good as new’. Under 
these assumptions, we study a repair 
replacement policy N based on the 
number of failures of the component 1. 
An explicit expression for the long –run 
average cost per unit time is derived and 
corresponding optimal replacement policy 
N* is determined such that the long –run 
average cost per unit time is minimum. 
Finally, numerical results are provided to 
highlight the theoretical results. To study 
the model we consider the following three 
definitions. 

Definition 1: Given a sequence of random 
variables H1, H2… if for some real 
number d and some real positive number 

r,    11 , 1, 2,.....n
nH n d r n  

form a renewal process (RP), then {Hn, 
n=1, 2,…} is an arithmetico-geometric 
process (AGP).  The two parameters d 
and r are called the common difference 
and the common ratio of the arithmetico-
geometric process respectively. 

Definition 2 :If r > 1 and 

1

10,
( 1)

H
nd

n r




 
   

, where n=2, 3, ….. 

And 1H is the mean of the first random 

variable 1H , then the process is called a 
decreasing AGP.  If d<0 and 0<r<1, 
then the AGP is called an increasing 
AGP, if d=0, r=1, then AGP becomes RP.  
Thus the general term of an AGP is

1
1 ( 1)n n

HH n d
r    . 

If d=0, then 1
1n n

HH
r  , which is a GP. 

If r=1, then 1 ( 1)nH H n d   , which is 

an AP. 

It is clear that if we put d=0 but 
  1 or   1  but d  0r r    then the 

process obtained becomes a GP or an 
AGP proposed by Lam [6] or Leung [5] 
respectively.  Hence, an AGP generalized 
on AP or GP. 

Definination:3 Given two random 
variables X and Y, X is said to be 
stochastically greater than Y, or Y is 
stochastically less then X, of P (X> )   
P (Y > ) for all real    

 This is denoted by X   Y or Y  
X (see ex. Ross). Further, a stochastic 
process {X

n
, n = 1, 2, 3 . . .} is 

stochastically decreasing (increasing) if X

n
,    ( ) X 1n  for all n = 1, 2 . . .  

In the next section, a repair replacement 
policy (N1, N2) is considered.  

 

2. MODEL 

 

In this section, we develop a model for a 
cold standby repairable system consisting 
of two identical components and with one 
repairman using arithmetico-geometric 
process, exposing to Weibull failure law 
under the following assumptions, such 
that the long-run average cost is 
minimum. 
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ASSUMPTIONS 
1. At the beginning, the system 
is new. 
2. When the system fails 
immediately it is repaired. 
3. Let nX  and nY be two 

independent random variables 
respectively denoting working time and 
repair time. 

4. Let  , 1, 2,....nX n  form a 

decreasing AGP exposing to decreasing 
Weibull failure law with parameters a >1 
and d1>0. 

5.  Let  , 1, 2,....nY n  form an 

increasing AGP exposing to an increasing 
Weibull failure law  with parameters 
0<b<1and d2<0. 
6. Let  

   
1 110  &  0n x yE X E Y     . 

7. The system is new at the 
beginning and both components are good, 
one is working and the other is cold 
standby.  The repair man will repair the 
working one as soon as it fails.  At the 
same time, the standby one begins to 
work.  When failed one is repaired, either 
it begins to work again or under cold 
standby. If one fails and the other is still 
under repair then system breaks down. 
8. Each component after repair 
is not as good as new. 
9. The time interval between 
the completion of the (n-1)th  repair and 
completion of nth repair on component i is 
called the nth cycle of component i, for 
i=1,2 and n=1,2…. 

10. Let     and n nF x G y be the 

distribution functions of ( ) ( )  i i
n nX and Y  

respectively.   
11. The cold standby state and 
nearest working state have the same 
distribution and that the repair state and 

the nearest waiting for repair state have 
the same distribution. 
12. The replacement policy N is 
used. 
13. The components in the 
system cann’t produce working reward 
during cold standby and no cost is 
incurred during waiting for repair. 
14. Let the repair cost rate of 
each component is Cr and working reward 
rate of each component is Cw and 
replacement cost of the system is C. 
In the next section, using the above 
assumptions we provide a methodology 
for obtaining an optimal solution for the 
replacement policy N such that the long-
run average cost per unit is minimized. 
 3.OPTIMAL SOLUTION 

Based on the assumptions of the model, 
we determine an optimal repair 
replacement policy N under which the 
number of repairs of component 1 
reaches N for a cold standby repairable 
system consisting of two identical 
components with one repairman using 
arithmetico-geometric process exposing 
to Weibull failure law such that the long-
run average cost per unit time is 
minimum.  Under the policy N, when the 
number of repairs of component 1 
reaches N, the component 2 is either in 
the working state or waiting for repair 
state in the Nth cycle.  Naturally, the 
former works until failure in the Nth 
cycle.  The latter is not repaired any more 
in the Nth cycle, while component 1 works 
until failure in the (N+1)th cycle. 

 Let T1 be the first replacement 
time of the system under policy N.  Let 

 2nT n  be the time between the (N-

1)th replacement and the Nth replacement 
of the system under policy N.  Clearly 

 1 2 3, , ,.....T T T form a renewal process.  
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The inter arrival time between two 
consecutive replacements is called a 
renewal cycle. 

Let C (N) be the long-run average cost 
per unit time under policy N. Thus, 

according to renewal reward theorem due 
to Ross [14, 15] we have: 
 

The expected cost incurred in a renewal cycle( )
 Expected length of the renewal cycle           

C N  ,    (3.1) 

Where the time between the (n-1)th replacement and the nth replacement is called the 
nth cycle. 

Let the length of a renewal cycle under replacement policy N is . 

   ( 2 ) (1)
1

1
(1) (1) (2) (1)

1 0
1 1 2 nn

N N N

n n n n Y X
n n n

L X Y Y X I




  
  

          

 

          ( 2) (1)
(2) (1)

0
2 n n

N

n n X Y
n

X Y I
 



      ,   (3.2) 

where I is the indicator function such that IA=1, if event A occurs 

 =0, if event A does’t occurs. 

The first, second, third, fourth terms are respectively, the length of working time, 
repair time, waiting time for repair, and cold standby time of component 1.  Now the 
problem is to find expected length of renewal cycle: i.e, 

   ( 2) (1)
1

1
(1) (1) (2) (1)

1 0
1 1 2

( ) ( ) ( )
nn

N N N

n n n n Y X
n n n

E L E X E Y E Y X I




  
  

          

          ( 2 ) (1)
(2) (1)

0
1

.
n n

N

n n X Y
n

E X Y I
 



         (3.3) 

The expected working time can be obtained as follows: 

If ):(~ 1,1
)( xWX i

n then the distribution function of nX for, i=1,2. is: 

   

11
1

1
1 11

11 ; 0

n

n
a x
n d a

n nF x e x









 
 

      .                 (3.4) 
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Now  ( )

0

( )i
n n nE X xdF x



     , for  i=1,2     

 (3.5)      

On simplification we have: 

           ( ) 1
11

1

11 ( 1) ; 1, 2.i
n nE X n d i

a


 

             
    

 (3.6)  

The expected repair time can be obtained as follows: 

Let ):(~ 2,2
)( xWY i

n then the distribution function of nY  is : 

 

21
1

1
2 2

2
1( ) 1 , 0, 1,   1, 2.

n

nb
n n

b y
n dF y e y for i










 
 
 
 


 

      (3.7) 

By definition 

 ( )
1

0

,   1, 2i
n n nE Y y dF y for i



                     (3.8) 

On simplification, equation (3.8)  we have: 

   2
21

2

11 1 ,   1, 2.i
n nE Y n d for i

b


 

                 
             (3.9)  

The expected length of waiting time for repair can be obtained as follows: 

If ):(~ 1,1
)( xWX i

n  and ):(~ 2,2
)( xWY i

n , then the distribution functions of 

  and  n nX Y are respectively: 

 
 

1

2

1

2

1 , 0, 1

1 , 0, 1 .

Kx
n n

Ly
n n

F x e x

F y e y













    


    
               (3.10) 

Differentiating equation (3.10) with respective to x and y respectively, we have: 
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1

2

1

2

1
1 1

1
2 2

( ) ; 0, 1

( ) ; 0, 1 .

n

n

Kx

Ly

f x K x e x
and

f y L y e y









 

 









  




   

            (3.11) 

where     

21

1
2 2

.
1

n

n
bL

n d b









 
    

  and 

                                  
 

11
1

1
1 1

.
1

n

n

a xK
n d a









 
    

 

Now the expected length of waiting time for repair is 

   (2 ) (1)
1

(2) (1)
1 0

0

. ( ) ,
nn

n n Y X
E Y X I u g u du





  

                    (3.12) 

where g(u) be the probability density function of (2) (1)
1n nu Y X  . 

Thus, according to the assumptions of the model, by definition of probability density 
function, convolution and using Jacobian transformation: 

 
0

( ) ,g u f v u v dv


 
,                    (3.13) 

Where  
(1) (2) (2) (1)

1 n-1,   such that  Y .n n nX v Y u v X u      
Since Xn and Yn  are independent, for n=1, 2,3,…. 
Thus equation (3.13) becomes: 

   
0

( ) . .g u f v f u v dv


 
                           (3.14) 

From equation (3.14) we have: 
11 2

1 2 1
1 2

0

( ) .k x L yg u K x e L y e d v
   




  
 

    21 21
1

1 2
0

( ) L u vK vg u K v e u v e d v
  


   

                         

   
2

2 1
2( )   z ; 0Lzg u L e z

    .               (3.15) 
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By definition  
   ( 2 ) (1 )

1

( 2 ) (1)
1 0

0

. ( )
nn

n n Y X
E Y X I u g u du





  

     
                         

                                                      

2
2 1

2
0

   z Lzu L e dz



  

   (3.16) 
 
On simplification, equation (3.16) becomes 

     ( 2 ) (1)
1

(2) (1) 2
1 22 20

11 2
nn

n n nY X
E Y X I n d

b



  

            
.              

(3.17) 
Similarly, the expected length of cold standby time is: 

   ( 2) (1)
(2) (1)

0
0

( )
n n

n n X Y
E X Y I vg v dv



 

      ,              (3.18) 

where g(v) be the probability density function of (2) (1)
n nv X Y  . 

By definition of probability density function, convolution, and using Jacobian 
transformation, we have: 

 
0

( , )g v f u v u du


                   

Where  (2)
nX u v  ,  (1)

nY u  such that (2) (1)
n nv X Y  .                           (3.19) 

 
Since ( )i

nX  and ( )i
nY  are independent, we have, n=1,2,…. 

 
0

( , )g v f u v u du


   

        
0

( ). ( )f u v f v du


        (3.20) 

Using equations (3.19) and (3.20) we have 

    21 2
1 1

1 2
0

K u+v  k u v Lue L u e du
  


      .             (3.21) 

On simplification, the equation (3.21) becomes: 
 

1
1 1

1( )   ; 0KZg v K Z e z
    .               (3.22) 

Let    ( 2) (1)
(2) (1)

0
0

( )
n n

n n X Y
E X Y I vg v dv



 

                    (3.23) 

On simplification, we have: 
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     ( 2 ) (1)
(2) (1) 1

110
1

11 1
n n

n n nX Y
E X Y I n d

b


  

                 
            (3.24) 

Using equations (3.6), (3.9), (3.17) and (3.24), the equation (3.1) becomes:  
 

 

1 1
(1 ) ( 2 ) ( 1 ) ( 2 )

1 1 1 1( )

N N N N
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  .                                                                        (3.25) 

Where  2
1 21

1 2

11 1
N

n
n

l n d
b


 


            
 ,       

1
2

2 21
1 2

11 1
N

n
n

l n d
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1
3 11

1 1

11 1
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n
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 ,      1

4 11
1 1

11 1
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n
n
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 2
5 22

2 2

11 2
N

n
n

l n d
b


 


            
 , 

which is the long-run average cost per unit time under policy N. 

Using C(N), we determined an optimal replacement policy N* analytically or 
numerically such that the long-run average cost is minimized. 

In the next section we provide numerical results to highlight the theoretical results. 
4. NUMERICAL RESULTS AND CONCLUSIONS 

For given hypothetical values of a, b, Cw, C, Cr, 1, 1, 2 ,2, d1 and d2 the optimal 
replacement policy N* is calculated as follows:     a=1.005, b=0.95, Cw=40, C=6500, 
Cr=50, d1=0-.001, d2=-2, 1 2 1 2=10, 25,  0.5,  2       
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TABLE 4.1 
 

 
 

Graph: 4.1 

 

CONCLUSIONS: By referring the table 4.1 and the graph 4.1 we observe that C (7) = 
21.037 is the minimum i.e., the optimal policy is N* = 7 and we should replace the 
system at the time of 7th failure. We also observe that a small change in either ‘a’ and 
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‘b’ results a drastic change in the optimal number N. Therefore An AGP model is more 
suitable for modeling repairable systems. 
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