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In the present analysis, we have discussed the large deflection, plane and radial 
displacement and the bending stresses for a clamped circular plate under axially 
symmetric non-uniform load by se of Berger's approximate method. In the end, some 
particular cases and the family of load shapes have been discussed. 
Notations used 

)1(12 2

3EhD   , the flexural rigidity of the plate, 

h =  thickness of the plate 

E =  Young's modulus,   
 = Poisson's ratio 

 = Lateral Displacement 
 = small deflection 
u = radial displacement, 

andr = axially symmetric non-uniform load. 
Statement of the problem and governing equations 
  Let us consider a circular plate of radius a, thickness h and flexural 
rigidity D whose edge is clamped, We also assume that an axially symmetric non-
uniform load f(r), given by 
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Where K0 is constant and the I-function in (1.1) is the multivariable I- function of N 
variables defined by Prasad [1], is imposed to the plate. If we neglect the strain energy 
due to second variant in the middle plane of the plate, then following the Berger's 
approximate method [2] the equation for large deflection due to an externally applied 
load f, for circular plate, can be given as 
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Where c is the normalized constant of integration given by 
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Where w, u, h and D are specified above. Since the circumference of the plate is 
clamped, the boundary conditions, therefore, for the problems are  

w = 0 = arwhere
dr
dw

 

and u =0 where r = a                               (1.4) 
2.  
  Let us suppose the solution of the problem in the form 

,rJAW j0j0jj
aJ        (2.1) 

j  being the jth root of equation 

 J1 (a j ) = 0        (2.2) 

And )(xJ is Bessel function 

 Obviously, the boundary condition (1.4) are satisfied by the solution assumed 
in (2.1). Combining equations (2.1) and (1.2) with the use of differential formula and 
recurrence relation for Bessel functions  (3 Vol II Ch VII), we arrive at  
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Where Aj
's are the constant to be determined. Multiply both sides of  (2.3) by r J0  (r j) 

and integrate with respect to r between limits O to a and utilize the orthogonal  
property of Bessel function 4, Vol. II, p. 70  to have 
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A general solution to the problem may, therefore, be given in the form 
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Provided that Fr) is such that the integral and the series in (2.5) are convergent. 
Further, appeal to the result. 
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where 
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(i=1 ...,: N), i, and Ui are given in [1], for i = 1 ...,: N leads to 
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provided that the condition given in (2.6)                                   are satisfied. 
 

 
 
 To obtain the expression for radial displacement u, introducing (2.1) into (1.3) 
and integrating with respect to r in view of result 4, vol. II, Chap. VII, p. 90(9), (10)], 
we arrive at 
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 (2.8) 
Where c1 is constant of integration. The boundary condition (1.4), consequently 
demands 
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If the deflection in the plate is small, then letting c= 0, the differential equation (1.2) 
corresponds to that for the small deflection cases and the solution (2.7) then leads to 
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Provided that the conditions aforesaid in (2.8) hold the bending stresses at the surface 
of plate which, for the circular plate (2), are given by 
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 being poisson's ratio, can be obtained by introducing (2.7) into (2.11) and (2.12). 
Thus, we find the bending stresses at the centre of the plate to be 
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And at the edge (r=a) to be 
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3. Particular cases and conclusions 
(i) W0, the large deflection at the centre may be deducted by putting r= 0 in (2.7) 
and is found to be 
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Where B( j), for space brevity, stands for the infinite series of the multivariable H- 
function falling in (2.7). 
(ii) whereas the small deflection at the centre of plate is given by 
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 (iii) If the normal pressure f(r) is of the form 
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 (3.3) 
Then, in the view of connecting formula (5, p. 151), the deflection of the plate is given 
by 
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Where 
xnm

qpH ,
, is the Fox's H- Function, provided that the corresponding conditions 

are satisfied. 
(iv) If the load shape is assumed of the form 
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The expression for deflection, in this case may be shown to be  
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Provided that the right side of (3.6) exists. 
 
4. Analysis of the family of load shapes 
 If p2= p3 = ... = pr = 0 =q2= q3 = ... = qr, N=1  

(i.e. H- function is of single variable), m'= 1=  z1= 1=  
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Now, we shall discuss the following cases: 

(i) If then,,,;1 O  
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 Equation (4.2) indicates that f(r) = 0 when r= a and 

 (or) 

Ka /1)
2

1(
      

 (4.3) 
Evidently, for positive k, f(r) is negative or positive according as 
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We, therefore, conclude that normal pressure over the plate are bounded by the circle 
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 is acting in –ve direction of z-axis (i.e. onward) whereas in 

the annular region a 

k/1)
2

1(
<r<a, it is acting in the +ve direction of z-axis 

(downward). 

(ii) If we take then,0,0,  
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 Equation (4.4), for positive K (K 0), represents an axially symmetric pressure 

distribution acting in the positive direction (if 
'
0K

>0) of different intensities for 
different values of parameters K and . 

(iii) Finally, if 0  ,then 

 F(r) =
'
0K

                     (4.5) 

Which stands for a uniform force of magnitude 
'
0K

 over the plate. 
Remark: Evidently, the problem considered here is not without practical interest as we 
may have various non-uniform distributions, of thrust at pts of contact when heavy 
bodies of different shapes are put on the plate. Also in many practical problems, when 
the normal force is given by elementary functions, we can find the solution from the 
mains result (2.7) and plot various graphs. 
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