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1.0. Introduction 

In the present paper, we have discussed the temperature distribution in non-
homogeneous moving bar.  We use some results involving meijer's G-function 
(1) and the multivariable i- function defined by Prasad (2) to obtain the most 
general solution. 

1.  Statement of the problem and governing equations 
 To exhibit the application of maljer's G-function and the multivariable 
i-function in the problems of physical sciences, we consider a non-
homogeneous bar moving in direction of its length (X-axis) between the limits 
x= -1 to x= +1. The bar is supposed to be so thin that the temperature at all 
points of the section may be taken to be the same. We also assume the 
conductivity and the velocity of the bar to be variable and that these are 
proportional to (1=x2) and [( ∝ ߚ− + ߛ + ߙ) + ߚ − ݔ(ߛ )] where ߚ, ߙ , ߛ  are 
constants. Lateral surface of the bar and its two ends are supposed to be 
insulated. The problem is thus one of linear flow in which the temperature is 
specified by the time and the distance, x, measured along the bar. 
 The differential equation satisfied by the temperature ݔ)ߠ,  at any  (ݐ
time t in a uniform bar with conductivity K, density  specific heat c and 
moving with velocity u in the direction of its length, is given by carslaw and 
jaeger  127.,3 P  as 
 
1.1 
  
 
Now instead of constant conductivity and constant velocity of the bar with 
variable conductivity k0(1-x2) and variable velocity  xK )(   , 
where K=k0/ρe,  
 Re(ߙ) > −1, Re(ߚ) > ݎ − 1; Ko ,α, β being all constants, the differential 

equation (1.1) reduces to  
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To obtain the most general solution, we assume the initial condition for the 
problem in the form 

θ(x,0) = f(x) = (1-x)ρ (1+x)σ       ܫమ,మ: ...∶ ೝ, ೝ
,మ: ...:, ೝ:           
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Where the I-function in (1.3) is multivariable I-function defined by Prasad (2). 
The following result will be used in the sequel: 
(i)
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 Provided that Re (  ) > -1, Re ( ) > -1. 

(ii) 
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(1.5) 
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Provided that Re (  )> -1; Re ( )   >-1.   (1.6) 
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2. Solution and analysis 
  Let us assume the solution of the differential equation (1.2) in 
the form 
 T(t),X(x)θ   
 The differential equation (1.2), then reduces to 

   









dx
dX

dx
xdx

xdt
dT

KT
)2()1(11

2

2
2 

            
(2.2)

 

 X and T being explicit functions, each side of (2.2) equals a constant. 
Assuming the constant to be -  ,1βγαβγαυ(υ    
Clearly we have 
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and 
 

)4.2(0)1(  TK
dt
dT    

 It is easy to verify [4, p. 13(1.5.1)] that the solution of equation (2.3) is 
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 (2.5) 
Where C1 is constant. Also, a solution of the differential equation(2.4)is  
 

  )6.2()1(exp2 tKCT    

 C2 being constant of integration. A general solution, therefore, of the 
equation (1.2) is 
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Where A  's are constants. To determine these constants, applying the initial 
condition (1.) in (2.7), we arrive at 
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 (2.8) 
Now we multiply both sides of (2.8) by  
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And integrate, thereafter, with respect to x between the limits x=-1 and x = 1. 
In the right side we interchange the order of integration and summation which 
is justifiable due to absolute convergence of the integral and the series 
involved therein. And finally appeal to the result (1.5) and (1.6) consequently, 
leads us to 
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 (2.9) 

Provided that f(x) is such that (2.9) exists. Introducing (2.9) into (2.7), we 
obtain a general solution of (1.2) in the form 
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(2.10) 
 Provided that the integral in (2.10) exists and the resulting series is 
convergent. 

 For f(x) given by (1.3) with the appeal of the result (1.7) we obtain the 
solution of the problem in the form.
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Being given by Prasad [2] and the series in (2.11) are convergent. 
 
3. Particular Cases 
(i) It is interesting as well as important to note that r =0 reduces the 
differential equation (1.2) into 
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And the equation (2.3) into the differential equation satisfied by Jacobi 

polynomial ).(, xP 

  

(ii) When the bar moves with uniform velocity, the differential equation 
(1.2) reduces to that given Carslaw and Jeeger [3, p. 127(3)] with variable 
conductivity and no radiation. 

(iii) when the bar is stationary, the differential equation (1.2) 
correspondence to that of given by Churchill [5, p. 224 (8)]. 

(iv) If we set P2=P3 = …= Pr= 0 = q2= q3 = … = qr-1 and ,O the result 
(2.11) reduces to the result recently obtained by Maurya (6). 
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