Vol.1 Issue.1, June, 2014



### Study on impact of oil and gas exploration activities on water quality in Konaseema Region of Andhra Pradesh

Dr.A.Venkateswara Rao and Dr.Ch.China Satynarayana Department of Chemistry, S.K.B.R.College, Amalapuram, E.G.Dt.-533201, A.P.

**Abstract:** The study area Konaseema, also called Central Delta, with huge off shore and on shore reserves of oil and natural gas. During the past 15 years, The Central Delta has home of oil companies like ONGC, GSPC, OIL, RIL are generate around 30 lakhs cubic meter of gas every day. Author Studied on Impact of oil and gas exploration Activities on water quality in konaseema using standard methods. The study clearly shows that the ONGC and other oil companies' developmental activity, exploring Oil and Natural Gas which successfully contaminated the ground water aquifer in the entire coastal belt of Konaseema area.

**Key words:** ONGC, Central Delta, exploration activities

#### Introduction

Konaseema. also called Central Delta, is an island which is cut off on three sides by the river Godavari and on the fourth side by the Bay of Bengal with huge off shore and on shore reserves of oil and natural gas. During the past 15 years, The Central Delta has home of oil companies like the Oil and Natural Gas Corporation(ONGC), State Petroleum Gujarat Corporation(GSPC), Cairn energy, Oil India Limited (OIL) and Reliance Industries Limited (RIL) for taking exploration activities. companies generate around 30 lakhs cubic meter of gas every day[1],

which have taken up the drilling and exploration activities are unmindful full of the negative effect of their activities on the environment particularly the water resources in this area. Hence this study involves analysis of water sample in areas where the explorations activities are for exploration, proposed the exploration is in progress and also surroundings of the exploration was completed.

#### **Experimental Methods**

The sample collection procedures and the methods adopted by author for the determination of different chemical parameters of the water samples collected from different



sources. The procedures adopted for the sampling and determination of various chemical parameters are as per the standard methods [2-6].

#### **Results and Discussion**

The Discussion is presented in the following manner

- a.Quality of Surface water samples at surroundings of the exploration is proposed
- b.Quality of Ground water samples at surroundings of the exploration is proposed
- c.Quality of Surface water samples at surroundings of the exploration is in progress
- d.Quality of Ground water samples at surroundings of the exploration is in progress
- e.Quality of Surface water samples at surroundings of the exploration was completed
- f.Quality of Ground water samples at surroundings of the exploration was completed

Oil and gas exploration exploration companies started activity for oil and natural gas in the coastal areas and offshore konaseema area in Bay of Bengal. The many places of coastal belt of konaseema from south to north had been explored for the last 15 Years. Some of the places exploration is in progress and some of the places exploration is proposed. During the

exploration they went to the depth of 1500-4000 meters in the earth some amount of ground water coming along with oil from those depths was brought to earth and was kept in waste water ponds. These are not cemented. This waste water is called produce water. This is mostly brine water with huge salt content i.e high concentrations of TDS, Na<sup>+</sup>, Ca<sup>+2</sup>, Mg<sup>+2</sup>, Cl etc., When the quantity of produce water is high from the drilling wells, the water collected in the waste ponds might over flow from the ponds especially during rainy season, and seep through the soil resulting in increased salt content of the ground water aguifer.

$$Ca^{+2}$$
 soil +  $Na^+$  +  $Cl^- \rightarrow Na^+$  soil +  $Ca^{+2}$  +  $Cl^-$ 

Similarly all other cations that are present in liquid waste (brine water) from oil companies drilling activity might exchange with Ca<sup>+2</sup> of soil and reach the ground resulting in increases of total hardness of the ground water aquifer.

At present, most of the onshore (on land) drilling operation of ONGC like companies were completed and most of the wells are in production and even in the few drilling sites, the author tried to get liquid waste effluents for analysis, he did not succeed as he was not allowed to collect the samples. He collected from, the literature, the composition of the produce water from drilling

ISSN: 2348-7666

Vol.1 Issue.1, June, 2014



operations and the results are presented in Table1

#### Table 1:ONGC

**Produce water** [7]

companies' developmental activity, exploring Oil and Natural Gas which successfully contaminated the ground water course.

|       | broduce the                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------|
| S.No  | ground water aquifer in the entire water coastal belt of Konaseema area.                                              |
| 3.110 | Parameters water water nH the critice water nH the critice water nH the critice water nH the critice water name area. |
|       | pH 93334 971 37.30 33 34 34 34                                                                                        |
| 2     | TDS REFERENCES8                                                                                                       |
| 3     | Chlorides <sub>1)</sub> Erm india executive summary of                                                                |
| 4     | Sulphates the proposed oil & gas                                                                                      |
| 5     | Total hardness development in offshore ravva                                                                          |
| 6     | Calcium, as Ca++ field, pkgm-1 block, Cairn india                                                                     |
| 7     | Salinity, as NaCl <sub>limited</sub> 3354 surasani yanam                                                              |
| 8     | Magnesium, Mg++ village 17ast dodayari district                                                                       |
| 9     | Total alkalinity as Cacgadhra pradesh october 2013.                                                                   |
| 10    | Bicarbonates as CaC03 2272                                                                                            |

2) "Methods for Chemical Analysis of Water and Wastes", U.S. Environmental Protection Agency. Cincinnati, **1979**.

The author collected few bore water, open well, tap water and canal water samples at surroundings of various drilling sites are proposed for the exploration, exploration is in progress and also surroundings of the exploration was completed and analyzed. The results of analysis of the canal and well water samples of various cases are presented in Tables 2 to 7.

- The salt content In these well waters is so high. The hardness,  $Ca+^2$ ,  $Mg+^2$ , Cl are high most probably due to seepage of brine water and D.O is low due to seepage of organic wastes which in turn results in high values  $NO_2$ .
- The above study clearly shows that the ONGC and other oil

- 3) "National Hand Book of Recommended Methods for Water Data Acquisition", U.S. Geologic Survey, Government Printing Office, Washington DC, **1977**.
- 4) "Standard Methods.for the Estimation of Water and Wastewater" 20th Edition. American Public Health Association, American Water Works Association, Water Pollution Control Federation, M.A.H. Eds. Fransons, Washington DC, 1998.
- 5) Reports on Public Health and Medical Subjects No.71 on "The Bacteriological Examination of Water Supplies", Her Majesty's

#### International Journal of Academic Research ISSN: 2348-7666 Vol.1 Issue.1, June, 2014

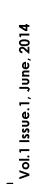


Stationary Office, London, **1969**.

- 6) Tsu Kal Jan, David R. Young, *Anal. Chem.*, **1963**.35, 1613.
- 7) A.I. Levorsen, Geology of Petroleum, CBS Publishers, **1985.**

## International Journal of Academic Research ISSN: 2348-7666




### Table-2

# Analysis data of chemical parameters of surface water samples at surroundings of the exploration is proposed in Konaseema area

## All values expressed in ppm except pH and E. C

|                                      |      |      |      |      |      |      |      | ,    | _    | _    | _    | _    | _    | _    |      |        |
|--------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| F-                                   | 0.3  | 0.2  | 0.3  | 0.2  | 0.2  | 0.2  | 0.3  | 0.1  | 0.2  | 0.3  | 0.3  | 0.2  | 0.2  | 0.2  | 0.2  | 0.23   |
| $SO_4^-$                             | 4.2  | 3.2  | 2.8  | 48   | 6.4  | 5.2  | 4    | 5.8  | 3.6  | 3.2  | 2.8  | 8    | 4.8  | 5.6  | 5.9  | 7.03   |
| $ m PO_4^-$                          | 3.6  | 2.3  | 2.2  | 8.8  | 2.9  | 3.7  | 3.2  | 6.6  | 6.8  | 3.6  | 9.6  | 4.9  | 2.5  | 4.9  | 4.2  | 4.07   |
| NO <sub>3</sub> -                    | 2.4  | 2.6  | 3    | 2.6  | 2.8  | 2.2  | 2.6  | 2J   | 2.8  | 3.5  | 3.9  | 3.6  | 3.5  | 2.8  | 2.9  | 2.75   |
| $\mathrm{NO}_2$ -                    | 0.02 | 0.03 | 0.02 | 0.04 | 0.02 | 0.03 | 90.0 | 0.03 | 0.03 | 0.05 | 0.05 | 90.0 | 0.04 | 0.05 | 0.03 | 0.04   |
| $ m K^+$                             | 3.9  | 5.4  | 3.7  | 1.4  | 3.5  | 3    | 3    | 4    | 3.4  | 2.4  | 3    | 3.2  | 4    | 1.6  | 3    | 3.23   |
| $\mathrm{Na}^{\scriptscriptstyle +}$ | 12   | 14   | 11   | 16   | 10   | 11   | 14   | 11   | 10   | 12   | 14   | 10   | 11   | 10   | 12   | 11.87  |
| ${ m Mg}^{+2}$                       | 12   | 12   | 12   | 11   | 12   | 15   | 11   | 16   | 14   | 11   | 11   | 12   | 12   | 13   | 12   | 12.40  |
| $\mathrm{Ca}^{+2}$                   | 22   | 20   | 21   | 20   | 35   | 56   | 26   | 24   | 24   | 28   | 22   | 22   | 30   | 32   | 22   | 24.93  |
| Total<br>Hardness                    | 93   | 66   | 86   | 94   | 138  | 123  | 113  | 123  | 118  | 113  | 86   | 103  | 125  | 133  | 86   | 95.87  |
| CI-                                  | 28   | 38   | 56   | 25   | 28   | 20   | 24   | 26   | 36   | 44   | 35   | 45   | 44   | 35   | 45   | 33.47  |
| TDS                                  | 147  | 150  | 143  | 158  | 183  | 170  | 159  | 162  | 162  | 168  | 146  | 164  | 172  | 168  | 146  | 159.87 |
| O.D                                  | 6.1  | 6.5  | 6.3  | 9.9  | 6.3  | 6.4  | 6.5  | 6.7  | 6.5  | 9.9  | 5.9  | 6.4  | 6.7  | 6.2  | 9    | 6.38   |
| Alkalinity                           | 125  | 135  | 149  | 145  | 142  | 103  | 154  | 150  | 154  | 128  | 138  | 140  | 144  | 128  | 138  | 138.20 |
| Turbid                               | 20   | 25   | 18   | 22   | 30   | 26   | 32   | 34   | 22   | 24   | 32   | 22   | 20   | 34   | 28   | 25.93  |
| E.C<br>(m<br>mhos)                   | 0.24 | 0.26 | 0.22 | 0.27 | 0.31 | 0.28 | 0.27 | 0.27 | 0.28 | 0.28 | 0.24 | 0.27 | 0.28 | 0.29 | 0.24 | 0.27   |
| Hd                                   | 7.9  | 8    | 7.7  | 7.9  | 7.9  | 7.9  | 7.9  | 8    | 8    | 7.9  | 7.9  | 8    | 7.8  | 7.6  | 8    | 68.7   |
| ${\rm Sample} \\ {\rm No}$           | 1    | 2    | 3    | 4    | 5    | 9    | 7    | 8    | 6    | 10   | 11   | 12   | 13   | 14   | 15   | Mean   |

## International Journal of Academic Research ISSN: 2348-7666 Vol.1 Issue.1,





Analysis data of chemical parameters of Ground water samples at surroundings of the exploration is Table-3 proposed in Konaseema area

All values expressed in ppm except pH and E. C

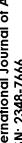
|                      |       |        |        |        |        |        |         |        |        |         |         |         |         |         |         |         |         |        | _      | _      | _      | _      | _      | _      |        | _      |        |        | _      | _      |      |
|----------------------|-------|--------|--------|--------|--------|--------|---------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| F-                   | 0.3   | 0.3    | 0.2    | 0.2    | 6.0    | 0.3    | 0.2     | 0.4    | 0.2    | 0.4     | 6.0     | 6.0     | 0.2     | 0.2     | 9.4     | 6.0     | 0.4     | 6.0    | 0.3    | 0.2    | 0.2    | 0.5    | 0.2    | 0.3    | ſО     | 0.4    | 0.4    | 6.0    | 0.4    | 0.4    | 0.3  |
| $\mathrm{SO_4}^{-2}$ | 118   | 86     | 123    | 164    | 130    | 128    | 134     | 102    | 82     | 130     | 135     | 126     | 116     | 120     | 122     | 126     | 106     | 128    | 116    | 114    | 146    | 108    | 140    | 130    | 124    | 110    | 106    | 104    | 126    | 112    | 120  |
| PO43                 | 16    | 18     | 20     | 18     | 21     | 19     | 18      | 16     | 14     | 18      | 18      | 19      | 12      | 15      | 20      | 16      | 14      | 18     | 16     | 1.7    | 21     | 15     | 19     | 18     | 19     | 19     | SI     | 15     | 15     | 16     | 16   |
| NO3                  | 29    | 24     | 52     | 53     | 23     | 19     | 33      | 20     | 57     | 23      | 32      | 40      | 32      | 31      | 25      | 56      | 23      | 44     | 24     | 35     | 54     | 32     | 55     | 20     | 35     | 32     | 20     | 32     | 23     | 24     | 33   |
| NO <sub>2</sub> -    | 90.0  | 90.0   | 90.0   | 60.0   | 0.07   | 0.03   | 0.04    | 60.0   | 80.0   | 0.07    | 90.0    | 0.07    | 0.1     | 60.0    | 0.04    | 0.05    | 0.02    | 0.01   | 0.07   | 0.03   | 0.03   | 0.03   | 0.02   | 0.15   | 0.21   | 0.5    | 0.12   | 0.02   | 0.07   | 0.01   | 0.1  |
| Κ                    | 7.5   | 4      | 9.8    | 9.8    | 6      | 5      | 5.6     | 9      | 4      | 8       | 5.2     | 4.2     | 4.6     | 4.1     | 4.5     | 5.7     | 8       | 8.6    | 16     | 12     | 31     | 22     | 4.5    | 58     | 8.7    | 14     | 2      | 10     | 11     | 9.3    | 6    |
| Na+                  | 23    | 22     | 35     | 44     | 25     | 30     | 30      | 24     | 24     | 23      | 25      | 28      | 38      | 69      | 45      | 28      | 27      | 45     | 27     | 36     | 86     | 37     | 90     | 53     | 34     | 44     | 20     | 31     | 30     | 33     | 35   |
| ${ m Mg}^{+2}$       | 50    | 43     | 29     | 28     | 43     | 46     | 43      | 24     | 28     | 43      | 34      | 46      | 12      | 63      | 44      | 45      | 26      | 53     | 56     | 55     | 45     | 31     | 36     | 34     | 40     | 31     | 56     | 58     | 31     | 27     | 40   |
| Ca <sup>+2</sup>     | 84    | 96     | 116    | 148    | 96     | 84     | 96      | 09     | 72     | 89      | 88      | 72      | 152     | 104     | 89      | 84      | 09      | 88     | 80     | 100    | 100    | 52     | 120    | 72     | 96     | 92     | 40     | 09     | 92     | 90     | 85   |
| Total Hardness       | 420   | 420    | 570    | 610    | 420    | 400    | 420     | 250    | 414    | 350     | 360     | 370     | 430     | 520     | 350     | 400     | 260     | 440    | 310    | 480    | 440    | 560    | 450    | 320    | 410    | 320    | 210    | 270    | 320    | 260    | 381  |
| CI-                  | 64    | 34     | 74     | 94     | 54     | 27     | 34      | 09     | 123    | 09      | 44      | 47      | 71      | 84      | 45      | 64      | 37      | 101    | 54     | 91     | 168    | 44     | 81     | 263    | 54     | 64     | 34     | 34     | 22     | 91     | 71   |
| TDS                  | 525   | 463    | 675    | 725    | 685    | 563    | 599     | 422    | 542    | 562     | 287     | 548     | 603     | 661     | 550     | 573     | 465     | 641    | 521    | 614    | 853    | 470    | 786    | 657    | 634    | 469    | 449    | 450    | 589    | 461    | 559  |
| D.0                  | 2.2   | 3.3    | 2.1    | 3.4    | 3.1    | 2.6    | 4.3     | 2.4    | 3      | 3.9     | 2.5     | 9       | 2.3     | 4.4     | 3       | 4.4     | 2.5     | 2.8    | 2.1    | 3.5    | 4.3    | 2.8    | 4.1    | 2.7    | 2.3    | 5.9    | 2.3    | 4.5    | 3.6    | 2      | 3.18 |
| Alkalinity           | 393   | 370    | 385    | 385    | 393    | 346    | 393     | 277    | 238    | 323     | 323     | 393     | 370     | 308     | 277     | 323     | 254     | 370    | 323    | 346    | 462    | 254    | 346    | 277    | 370    | 323    | 231    | 277    | 300    | 300    | 331  |
| Turbid               | 8     | 9      | 5      | 4      | 8      | 9      | 4       | 8      | 8      | 4       | 5       | 9       | 5       | 7       | 9       | 8       | 9       | 4      | 5      | 8      | 10     | 4      | 8      | 5      | 9      | 9      | 5      | 8      | 9      | 4      | 9    |
| E.C (m mhos)         | 6.0   | 8.0    | 1.16   | 1.25   | 1.02   | 76.0   | 1.03    | 0.73   | 0.93   | 76.0    | 1.01    | 0.94    | 1.04    | 1.14    | 0.95    | 66'0    | 8.0     | 1.1    | 6.0    | 1.06   | 1.47   | 0.81   | 1.35   | 1.13   | 1.09   | 8.0    | 0.77   | 0.77   | 1.01   | 0.79   | 1    |
| Hd                   | 8     | 8.2    | 8      | 8      | 8      | 9.8    | 8.3     | 8.2    | 8.4    | 9.8     | 8.4     | 8.7     | 8.2     | 8.3     | 8.2     | 8.4     | 8.5     | 8.4    | 8.5    | 8.7    | 8.6    | 8.6    | 8.2    | 8.5    | 8.4    | 8.6    | 8.6    | 8.5    | 8.5    | 8.3    | 8    |
| Sample No            | )BW)1 | ) BW)2 | ) BW)3 | ) BW)4 | ) BW)5 | ) BW)6 | ) OW) 7 | ) BW)8 | ) BW)9 | ) OW)10 | ) BW)11 | ) TW)12 | ) BW)13 | ) OW)14 | ) BW)15 | ) OW)16 | ) BW)17 | 18(BW) | 19(BW) | 20(OW) | 21(OW) | 22(BW) | 23(OW) | 24(BW) | 25(BW) | 26(BW) | 27(BW) | 28(OW) | 29(OW) | 30(BW) | Mean |

www.ijar.org.in

296

# International Journal of Academic Research ISSN: 2348-7666

Vol.1 Issue.1, June, 2014




### Table-4

# Analysis data of chemical parameters of surface water samples at surroundings of the exploration is in progress in Konaseema area

All values expressed in ppm except pH and E. C

| F                                    | 0.2  | 0.2     | 0.2     | 0.3   | 0.2   | 0.3   | 0.2    | 0.2   | 0.3   | 0.3             | 0.2    | 0.2    | 0.2    | 0.2    | 0.3    | 0.2  |
|--------------------------------------|------|---------|---------|-------|-------|-------|--------|-------|-------|-----------------|--------|--------|--------|--------|--------|------|
| $SO_4$ .                             | 3.8  | 3.5     | 2.2     | 3.2   | 2.8   | 3     | 2.6    | 2.2   | 2     | 2.4             | 3.2    | 3.2    | 3.4    | 3.8    | 2.8    | 2.9  |
| $\frac{\text{PO}_4}{3}$              | 4.5  | 3.4     | 9.6     | 4     | 5.2   | 3.4   | 3.2    | 4.3   | 3.6   | 3.4             | 3.6    | 4.5    | 4.6    | 5.9    | 5.2    | 4.1  |
| NO3-                                 | 3.3  | 2.8     | 2.6     | 2.4   | 2.8   | 3.6   | 3.2    | 3.6   | 3.9   | 3.6             | 3.2    | 3.1    | 1.5    | 3.6    | 3.2    | 2.8  |
| NO <sub>2</sub> -                    | 0.01 | 0.03    | 0.04    | 0.02  | 0.03  | 0.05  | 0.04   | 0.03  | 0.05  | 0.04            | 0.05   | 0.02   | 0.04   | 0.05   | 0.04   | 0.04 |
| $ m K^+$                             | 2.8  | 4.5     | 3.7     | 9.6   | 8.8   | 3.5   | 3.3    | 5.3   | 4.1   | 3.2             | 9.6    | 3.1    | 4      | 3.3    | 2.8    | 3    |
| $\mathrm{Na}^{\scriptscriptstyle +}$ | 20   | 61      | 12      | 81    | 12    | 11    | 10     | 12    | 11    | 16              | 81     | 61     | EI     | 12     | 01     | 11   |
| ${ m Mg}^{+2}$                       | 11   | 11      | 11      | 6.5   | 14    | 12    | 12     | 8.4   | 10    | 12              | 14     | 9.4    | 9.6    | 12     | 12     | 8    |
| $\mathrm{Ca}^{+2}$                   | 56   | $^{22}$ | 56      | 30    | 31    | 31    | 32     | 56    | 27    | 28              | 30     | 56     | 28     | 67     | 27     | 28   |
| Total<br>Hardness                    | 112  | 122     | 108     | 111   | 135   | 127   | 130    | 107   | 108   | 118             | 132    | 104    | 110    | 123    | 116    | 110  |
| CI-                                  | 17   | 44      | 88      | 28    | 36    | 44    | 45     | 41    | 46    | 38              | 98     | 35     | 41     | 45     | 98     | 38   |
| TDS                                  | 197  | 891     | 123     | 154   | 881   | LLT   | 981    | 891   | 162   | 188             | 861    | 174    | 891    | 961    | 163    | 176  |
| D.0                                  | 6.6  | 6.7     | 6.4     | 6.2   | 6.4   | 9     | 9.9    | 6.5   | 6.2   | 8.9             | 8.9    | 6.2    | 8.9    | 9.5    | 9.9    | 9    |
| Alkalinity                           | 160  | 138     | 146     | 120   | 127   | 126   | 142    | 141   | 144   | 137             | 132    | 120    | 1.54   | 137    | 133    | 126  |
| Turbid                               | 28   | 35      | 98      | 45    | 82    | 46    | 30     | 24    | 20    | 36              | 40     | 23     | 27     | 35     | 30     | 31   |
| E.C (m<br>mhos)                      | 0.32 | 0.28    | 0.26    | 0.25  | 0.32  | 0.29  | 0.32   | 0.28  | 0.27  | 0.31            | 0.33   | 0.3    | 0.28   | 0.33   | 0.28   | 0.29 |
| $\mathbf{H}^{\mathrm{d}}$            | 7.8. | 9.7     | 6.7     | 7.4   | 7.8   | 7.6   | 7.2    | 7.4   | 7.2   | 7.1             | 7.2    | 7.2    | 7.4    | 7.6    | 7.8    | 96.9 |
| $_{ m No}$                           | III  | 111-2   | E-III-3 | III-4 | 2-III | 9-III | LIII-7 | 8-III | 6-III | 0I <b>-</b> III | III-11 | III-12 | III-13 | III-14 | 2I-III | Mean |





### Table-5

# Analysis data of chemical parameters of Ground water samples at surroundings of the exploration is in progress in Konaseema area

All values expressed in ppm except pH and E. C

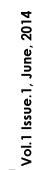
| -된                                       | 0.3  | 0.3  | 0.2        | 0.2  | 0.3  | 6.0  | 0.2  | 0.4  | 0.2  | 0.4  | 6.0  | 0.3  | 0.2  | 0.2  | 0.4  | 0.3  | 0.4  | 0.2               |
|------------------------------------------|------|------|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------------------|
| $\mathrm{SO_4}^{-2}$                     | 117  | 86   | 125        | 191  | 130  | 128  | 134  | 102  | 82   | 130  | 135  | 126  | 911  | 120  | 122  | 126  | 901  | $\frac{121.0}{6}$ |
| $ m PO_4^-$                              | 17   | 61   | 20         | 18   | 21   | 61   | 18   | 16   | 14   | 18   | 18   | 61   | 14   | 15   | 20   | 16   | 14   | 17.4<br>1         |
| NO<br>3-                                 | 30   | 25   | 52         | 53   | 23   | 19   | 33   | 20   | 57   | 23   | 32   | 40   | 32   | 31   | 25   | 26   | 23   | 32                |
| NO<br>2                                  | 0.09 | 0.16 | 0.16       | 60.0 | 0.07 | 0.13 | 0.14 | 60.0 | 80.0 | 0.07 | 90.0 | 0.07 | 0.1  | 60.0 | 0.14 | 0.15 | 0.12 | $0.1 \\ 1$        |
| $ m K^+$                                 | 12.1 | 11   | 9.8        | 10.2 | 6    | 11.2 | 10.2 | 11.2 | 12.3 | 14   | 12.2 | 11.2 | 12.2 | 12.9 | 11.3 | 12.3 | 11.3 | 11.3<br>6         |
| $\mathrm{Na}^{\scriptscriptstyle +}$     | 223  | 222  | 235        | 244  | 225  | 230  | 230  | 190  | 192  | 195  | 221  | 228  | 238  | 259  | 245  | 228  | 227  | 225.4 $1$         |
| $\mathbf{M}_{\mathbf{Z}}^{\mathbf{q}^+}$ | 54   | 43   | <i>L</i> 9 | 89   | 43   | 46   | 43   | 24   | 28   | 43   | 34   | 46   | 54   | £9   | 44   | 45   | 97   | 46.5<br>3         |
| $Ca^{+2}$                                | 94   | 96   | 116        | 148  | 92   | 84   | 92   | 09   | 72   | 89   | 82   | 72   | 92   | 104  | 88   | 84   | 09   | 86.3<br>5         |
| Total<br>Hardne<br>ss                    | 430  | 420  | 570        | 009  | 420  | 400  | 420  | 250  | 414  | 350  | 360  | 470  | 430  | 520  | 350  | 400  | 460  | 427.29            |
| CI-                                      | 264  | 334  | 374        | 294  | 354  | 327  | 234  | 260  | 323  | 260  | 244  | 247  | 271  | 284  | 245  | 264  | 237  | 283.2<br>9        |
| TDS                                      | 925  | 696  | 975        | 1025 | 1012 | 666  | 1023 | 1045 | 1056 | 1045 | 1042 | 952  | 905  | 952  | 856  | 965  | 586  | 931.8<br>8        |
| D.<br>0                                  | 2.1  | 3.5  | 2.1        | 3.4  | 3.1  | 2.2  | 4.3  | 2.4  | 3    | 3.9  | 2.5  | 4    | 2.3  | 4.4  | 3    | 4.4  | 2.5  | $\frac{3.1}{2}$   |
| Alkalinit<br>y                           | 493  | 470  | 385        | 485  | 393  | 346  | 393  | 577  | 638  | 323  | 323  | 393  | 370  | 408  | 477  | 623  | 554  | 450.06            |
| $rac{	ext{Turbi}}{	ext{d}}$             | 8    | 9    | 5          | 4    | 8    | 9    | 4    | 8    | 8    | 4    | 5    | 9    | 5    | 7    | 9    | 8    | 9    | 6.12              |
| E.C<br>(m<br>mhos                        | 6.0  | 8.0  | 1.16       | 1.25 | 1.02 | 76.0 | 1.03 | 0.73 | 0.93 | 26.0 | 1.01 | 0.94 | 1.04 | 1.14 | 0.95 | 66.0 | 8.0  | 0.98              |
| $\mathrm{H}^{\mathrm{d}}$                | 7.9  | 8.2  | 8          | 7.5  | 8    | 8.1  | 7.4  | 7.5  | 8.4  | 6.7  | 7.5  | 8.1  | 8.2  | 6.7  | 8.2  | 8.1  | 7.8  | 7.9               |
| Sampl<br>e No                            | 1    | 2    | 3          | 4    | 2    | 9    | 7    | 8    | 6    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | Mean              |

### International Journal of Academic Research ISSN: 2348-7666 Vol.1 Issue.1, June, 2014



### Table-6

# Analysis data of chemical parameters of surface water samples at surroundings of the exploration was completed in Konaseema area


All values expressed in ppm except pH and E.C

|                                      | _        | _        | _    | _    | _    | _    | _    | _    | _    |                | _                                       |
|--------------------------------------|----------|----------|------|------|------|------|------|------|------|----------------|-----------------------------------------|
| দ                                    | 0.3      | 0.3      | 0.3  | 0.2  | 0.3  | 0.3  | 0.3  | 0.2  | 0.3  | 0.4            | $0.1 \\ 7$                              |
| SO <sub>4</sub>                      | 10.<br>2 | 11.<br>2 | 8.3  | 8.7  | 6.9  | 6.6  | 6.2  | 6.8  | 8.6  | $\frac{10}{2}$ | $\frac{5.2}{2}$                         |
| $_{_{\mathrm{S}}}^{\mathrm{PO}_{4}}$ | 8.2      | 5.2      | 6    | 8.1  | 7.2  | 8.2  | 7.2  | 8.3  | 5.6  | 9.6            | 4.27                                    |
| NO <sub>3</sub>                      | 8.1      | 5.2      | 9.1  | 10.1 | 12.2 | 11.2 | 12.2 | 14.2 | 10.2 | 7.1            | 5.86                                    |
| NO2                                  | 0.05     | 0.03     | 90.0 | 80.0 | 0.13 | 0.06 | 80.0 | 0.14 | 0.03 | 0.15           | 0.05                                    |
| $ m K^{+}$                           | 5.1      | 4        | 6.2  | 9.5  | 2.5  | 7.3  | 3.9  | 9.1  | 8.2  | 4.8            | $\frac{3.5}{1}$                         |
| $\mathrm{Na}^{\scriptscriptstyle +}$ | 21       | 56       | 31   | 27   | 97   | 56   | 20   | 25   | 20   | 67             | 14.9<br>4                               |
| $ m Mg^{+2}$                         | 21       | 41       | 35   | 07   | 24   | 15   | 22   | 98   | 41   | 24             | 16.1<br>8                               |
| $\mathrm{Ca}^{+2}$                   | 32       | 65       | 53   | 41   | 35   | 25   | 35   | 69   | 42   | 55             | 26.5<br>9                               |
| Total<br>Hardnes<br>s                | 198      | 202      | 195  | 185  | 190  | 220  | 212  | 218  | 194  | 198            | 118.35                                  |
| CI-                                  | 98       | 85       | 73   | 33   | 74   | 19   | 35   | 44   | 65   | 52             | 33.2<br>9                               |
| TDS                                  | 399      | 400      | 388  | 349  | 385  | 420  | 428  | 401  | 385  | 369            | $230.8 \\ 2$                            |
| D.0                                  | 3.5      | 3.7      | 3.4  | 3.5  | 9.6  | 4.1  | 4.8  | 4.1  | 3.4  | 3.8            | $\begin{array}{c} 2.2 \\ 5 \end{array}$ |
| Alkalinit<br>y                       | 165      | 220      | 175  | 162  | 189  | 195  | 200  | 190  | 180  | 167            | 108.41                                  |
| Turbi                                | 25       | 27       | 24   | 56   | 28   | 56   | 24   | 56   | 56   | 25             | 15.29                                   |
| E.C<br>(m<br>mhos                    | 1.87     | 2.27     | 1.43 | 2    | 2.2  | 1.89 | 2.05 | 2.12 | 2.42 | 2.4            | 1.21                                    |
| Hd.                                  | 7.3      | 7.5      | 8.7  | 2.7  | 8.1  | 8    | 7.4  | 8.7  | 7.1  | 9.7            | 4.4<br>8                                |
| Sampl<br>e No                        | Ι        | 2        | 3    | 4    | 2    | 9    | 7    | 8    | 6    | 10             | Mean                                    |

www.ijar.org.in

299

### International Journal of Academic Research ISSN: 2348-7666 Vol.1 Issue.





### Table-7

# Analysis data of chemical parameters of Ground water samples at surroundings of the exploration was completed in Konaseema area

All values expressed in ppm except pH and E.C

|                    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _     |
|--------------------|------|------|------|------|------|------|------|------|------|------|-------|
| ᆣ                  | 0.4  | 0.3  | 0.3  | 0.3  | 0.3  | 0.4  | 0.3  | 0.2  | 0.3  | 0.4  | 0.32  |
| SO <sub>4</sub> -2 | 240  | 320  | 350  | 252  | 324  | 240  | 230  | 340  | 328  | 285  | 290.9 |
| PO4-3              | 11.4 | 10.9 | 17.6 | 16.2 | 14.9 | 17.1 | 13.9 | 17.3 | 13   | 14.1 | 14.64 |
| NOs-               | 18.6 | 15.2 | 19.7 | 19.1 | 27.2 | 14   | 23   | 9.6  | 53.7 | 24   | 22.01 |
| NO2-               | 0.05 | 0.13 | 0.06 | 1.3  | 0.13 | 0.26 | 0.08 | 0.14 | 0.03 | 0.35 | 0.25  |
| $\mathbf{K}^{+}$   | 13   | 20   | 16   | 59   | 52   | 15   | 3    | 12   | 20   | 20   | 23    |
| Na <sup>+</sup>    | 212  | 268  | 313  | 272  | 563  | 495  | 200  | 250  | 405  | 395  | 337.3 |
| ${ m Mg^{+2}}$     | 52   | 82   | 72   | 40   | 28   | 24   | 22   | 81   | 82   | 44   | 99    |
| Ca⁺²               | 62   | 112  | 105  | 72   | 82   | 58   | 89   | 139  | 84   | 28   | 83.6  |
| Total<br>Hardness  | 390  | 620  | 620  | 400  | 350  | 300  | 400  | 780  | 550  | 350  | 476   |
| CI-                | 242  | 220  | 733  | 333  | 741  | 133  | 358  | 449  | 829  | 524  | 439.1 |
| TDS                | 1087 | 6681 | 1994 | 1163 | 1860 | 1094 | 1190 | 1842 | 1816 | 1617 | 1372  |
| D.O                | 2.5  | 2.5  | 6.8  | 2.1  | 2.3  | 2    | 2.2  | 2.3  | 2.3  | 2.2  | 2.43  |
| Alkalinity         | 525  | 009  | 625  | 750  | 029  | 775  | 425  | 009  | 625  | 725  | 630   |
| Turbid             | 4    | 8    | 10   | 2    | 10   | 6    | 9    | 10   | 12   | 10   | 8.4   |
| E.C (m<br>mhos)    | 1.87 | 3.27 | 3.43 | 2    | 3.2  | 1.89 | 2.05 | 3.18 | 3.13 | 2.79 | 2.68  |
| Ħ                  | L    | 7.4  | 9.7  | 8.7  | 8    | 8    | 2.7  | 7.4  | 7.4  | 9.7  | 7.57  |
| Sample             | I    | 2    | 3    | 4    | 5    | 9    | 2    | 8    | 6    | 10   | Mean  |

BW: Bore well water

OW: Open well water

TP: Tap Water